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varied continuously from zero. 
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The equations of the dynamics of an ideally flexible string were solved relative to the 
curvature and torsion of its shape in [I], and the characteristic wave propagation veloci- 
ties of these parameters were found. A connection between the characteristic velocities 
and the loss of stability of the shape is established herein. which is identified with the 

loss in correctness of formulating problems with initial conditions. 
We understand an ideally flexible string to be a material line which does not resist a 

change in shape, i.e. in curvature C?, and torsion Q,. 

Let the unperturbed motion of the string be characterized by the equations 

Qi” = Rio (3 1) (i = 1.3) 

Here s is the arc coordinate, and i the time. 

Let us give some small deviations Pi0 (s) from the unperturbed values to the curvature 

and torsion by demanding that these deviations satisfy appropriate boundary conditions. 
The perturbed motion of the string then becomes 

n, = Q*@ (t, Q + et (I, I) (i = 1.3) 

In some domain D (0 4; t < +, 0 < t Q tr) let the following inequalities hold 

max j cti - nioj < a, maxje4l<v (11 
Let us consider the string shape unstable in the domain D if 

a+ b>o for Y--. 0. (9) 

Let us consider an arbitrary system of equations with constant coefficients 
n 

N %. 
%i at L+ 3j 

j=l 
‘2 + Crfij) 2 0 (3) 

Let the initial conditions be 
I 

7 o---c 
,?I - i-1 

-l~Si, )_,>O; qjo=O, (i=i,2,...,n#m) for t=fk o6x68l 6) 

Let US assume that the relationships (4) satisfy the boundary conditions of Eq.(3). 
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Dispensing with the specific form of these boundary conditions. we assume that the series 
of appropriate eigenvalues &I, II*,... etc. has no upper bound. 

The solution of (3) can be written as 
n 

qj = 2 ..ljkC 
a,(xkf-o)I 

(j=i,...,n) 

k==l 

Here the 2.k are roots of the characteristic equation 

(5) 

det 

and the Ajk are determined from the system 
n 

XC “ljkk - blj - ‘lj ..ijk = 0 (k= 1,. . .,n) 

j=l 
> 

7 

to the accuracy of arbitary constants Cl,..., Ck. Let us first assume that all the roots i., 
are distinct. Then Ajk = BjkC,, det (‘jr) # 9 (8) 

where the coefficients Bjk are determined just by the coefficients of the system (7) and 
the values of &. For every fixed value It, there is evidently a value i+ such that 

Br+k, + 9 
To determine the Ckwe have the system 

n 

Here 

Let us assume that 

Then 

qj* = 2 BjkCk (9) 
k-1 

Qj’ = qj for t = 0. I = 0 

1 
qj=m l CT- 

Al ’ 9jdrn ‘SO 

’ 31 0 

. . . . . . 

ck=+,,’ =k . =d B&-l 1 

. . . . . . 

=, 0 

(10) 

(11) 

Since the matrix (Bjk) is nonsingular, the coefficients LIP cannot equal zero simultan- 
eously. Taking account of (9) and (ll), the relationship (5) becomes 

(12) 

Besides the relationships (6) and (7), let us consider the auxiliary relationships 

det (aljb* - blj) - - 0. i (arji.,. - blj) Ajr* = 0 (13) 
j==l 

Evidently the Al;* andAjr*determined from (13) are independent of 1.r , so the coeffici- 
ents Rjk* and ak*determined from (7),(8),(11) by means of Al* andAjk*are also indepen- 
dent of 1r . Let us note here that the )L&* are characteristic velocities of the waves being 
propagated. 

Let a, + w. Then 

I., --, I,*. A. + A..‘, 
IL 11 

B. + B. l , 
lk >k akdak*, u=l.....n) (14) 
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and for sufficiently large values of %r the relationship (12) can be written as 

where ei;, ck are small positive numbers and 

ep. 51;-+ 9 for 5~-, m (16) 

Let us assume that there are complex numbers among the i.,*.The number of complex 
roots is even because of the reality of the coefficients arj, blj , and there is a &._* in 

each pair of these roots for which Jm&,* < 0. 
Let us select the number m in (10) in such a way that the inequality a&., # 0 would 

hold in conformity with (11). It is easy to see that there is always such a possibility since 

the matrix (Bjk) is nonsingular. Indeed, let us consider the k,.-th row of matrix (Bjk)-‘. 

Among the elements of this row there is certainly a nonzero element. Let this element 

correspond to the pth column. Selecting m = p, we arrive at the nonzero value ok+. 
It has been noted above that for each k, there is at least a value j+ such that Bj+tr+ f 0. 

From (15) let us select a solution for gj+ which can be written thus : 

Letting lir - DC, we obtain 
‘I’ -DC 
I+ for qj”*’ 

(13 

where the relationships (18) hold for any $1 and tt, i.e. for any domains LB. 
The reasoning is not changed if there are multiple roots among the AL. The coeffici- 

ents B+, will hence be polynomials in t, which does not affect the result (8). 

The formulated resuIt has been obtained under “artificial” initial conditions deter- 
mined from the relationships (13) at t = 0, namely 

n 

qj (’ = 0) = 6 2 Bjkake+ 
if=1 

(19) 

Let the initial conditions of the system (3) be arbitrary (but satisfy the boundary con- 

ditions) q; (t = 0) = qj+ (c) (j = f,..., n) (N 

and let its solution become 
% = 92. (G 1) (j = l,..., n) (2i) 

Let us append the initial conditions (19) to the initial conditions (20). Selecting A, 
sufficiently large, the changes in the initial conditions (20) can be made so small that 

they will not emerge beyond the limits of accuracy of their assignment, 
However. the solution of the original system (3) on the basis of the superposition prin- 

ciple becomes 
qi = qj+ (s, f) + + i Bil;oleA’O.~t-“i (W 

fl 

and possesses the same property as the solution (14) for lil-, 00. Thus, the presence of 
complex elastic wave propagation velocities which occur when the initial system will 
be ultra-hyperbolic or elliptic, will be a sufficient condition for instability, in the class 
of differentiable functions, of the solution of the system (3) in problems with initial con- 
ditions. This result is in good agreement with the Hadamard p] example, and can be 
considered its generalization. 
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Let the original system (3) be quasilinear, i.e. Oej. b,j, cej depend on qj, t, r. Let US 

assume these dependencies are given by analytic functions. Let us linearize the system 
relative to some unperturbed values qj” (s, 1), and let us linearize the obtained coeffici- 

ents of the linearized system Oej” (s, i), b,jo (I, 1) cej” (8, t) once more relative to the fixed 
values so = 0, i0 = 0. 

We therefore arrive at a linear system with constant coefficients of the type in (3), 
which will be “close” to the original quasilinear system for ‘iufficiently small” f, I and 
Aqj = QI - 4,‘. The results obtained above on the loss of stability remain valid even for 

a quasilinear system in the same domain with the sole difference being that a weaker 
assertion should here be satisfied, namely : from Aqj (t = 0) 4 0 follows Aqj > 60 > 0, 
where b. is a sufficiently small fixed number since the linearized system may differ sub- 

stantially from the original for Aqj -+ OQ . 

Indeed, if A qj - 0 were to follow for arbitrarily small t and t from Aq; (t = 0) -) 0 
for the original system, then this same result would hold in the linearized system. 

Therefore, if the system (3) is quasilinear and in some sufficiently small neighborhood 
of the values lo, SO, q. will be ultra-hyperbolic or elliptic, then its solutions in problems 
with initial conditions are unstable in the class of differentiable functions. It is hence 
certainly assumed that the existence and uniqueness of these solutions hold under appro- 

priate boundary conditions. 
It has been shown in [l] that two kinds of characteristic wave propagation velocities 

(curvature and torsion waves) hold in an inextensible ideally flexible string 

Here T is the tension, p the linear density, Q, the curvature of the shape,Fr,F,Js,ul, 
VZ, va the projections of resistive forces, and the velocities on the axes of the natural tri- 

hedron of the string, respectively. 
According to the results obtained above, the stability of the string shape is lost upon 

compliance with one of the two conditions 
1 

T<% Tf,l 
aF8 aFS 

F~+~va- ac, \ - ~"~ <O w 

The first inequality indicates that the shape of a compressed flexible string is unstable. 

This deduction is in good agreement with everyday practical observations. Indeed, al- 
though the compressed state of a flexible string does not contradict any of the laws of 
mechanics, this state is practically unrealizable because a compressed flexible string is 
unstable. 

However, it follows from the second inequality in (24) that instability can set in in the 
string not only under compression ; it can even occur in an extended string if the paren- 

thesis in (24) is negative and the curvature hl, is sufficiently small (for example, near 
the inflection point). This result is less evident and not provided for directly although 
the loss of stability should occur here physically with the same intensity as in the first 
case, with the sole difference that the cause of the loss of stability in the first case will 
be degeneration of the curvature waves, and of the torsion waves in the second case. 

It is known [l] that a third system of waves (tension waves) is manifest in an extensi- 
ble string. It is easy to see that the propagation velocities of these waves will not be 
subject to degeneration for any of the string parameters. Therefore, the stability of the 
shape of extensible strings is lost upon compliance with the same inequalities (24). as 
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for an inextensible string. 

Let the string move over a surface. In conformity with the results obtained in [l], two 
cases should be distinguished, namely : (a) the string will coincide with the asymptotic 
curve of the surface, and (b) the string will not coincide with the asymptotic curve of the 
surface. Only curvature waves being propagated with velocity Is will occur in the first 

case, and the loss of stability of the shape occurs at T < 0. An illustration for this case 

is the motion of a string over a plane accomplishing a bilateral connection. In the second 
case there occur torsion waves propagated with the velocity 

aFa aFa 
F2+-7gw-3yn 

>I 

Here PI, p2, PI are the direction cosines of the friction vector in the axes of the natu- 
ral trihedron, k is the friction coefficient of the string on the surface, and d is the angle 

of geodesic declination of the string on the surface. 
In this case the condition for loss of stability becomes 

Ti_AIB<O (26) 

The results presented above arouse interest at those points of the string at which rege- 
neration of the hyperbolic system ofdynamics equations into an ultra-hyperbolic or ellip- 
tic system occurs, i.e. at those points of the string at which equalities hold in place of 
the inequalities (24) or (26). The neighborhood of these points should be subjected to 
special investigation. One such investigation has been performed in [3], where it has been 
shown that an abrupt rise in velocity (a flick of the whip), connected with the loss in sta- 

bility of the shape near the point 2’ = 0, occurs near the free end of the string (for T == 0). 

In conclusion, let us consider the singularities of the formulated instability condition 
(2) in rather more detail. According to this condition, instability is manifested in an 
arbitrarily small time interval as contrasted to Liapunov instability, which is disclosed 
as t ---t DC. In this sense, the considered instability will be stronger than Liapunov instabi- 

lity. 
Also essential is the fact that the criteria of the introduced instability depend only on 

the coefficients of the highest derivatives in the appropriate dynamics equations (by 

which the kind of system is determined), and is independent of not only the remaining 

coefficients, but also of the boundary conditions. The introduced instability therefore 
reflects quite general dynamic properties of the string, and can be called absolute insta- 
bility. It is clear that absolute instability is not realizable, in principle, in systems with 
a finite number of degrees of freedom. Up to now this instability has not been detected 
in three-dimensional continuous systems, since waves carrying changes in the internal 
geometry parameters (tension, shear, pressure waves), do not degenerate for any values 
of the parameters (even for nonlinear strain characteristics). And absolute instability can 
occtn just in one- or two-dimensional continuous systems, where “transverse” waves or 
waves carrying changes in the shape parameters, i. e. the external geomery, exist. 
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The question of the existence of an unloading wave in the case of one-dimensional wave 
propagation in a semi-infinite rod of material with delayed yielding is solved herein. 

Unloading conditions are formulated here, and an analytic method to obtain an expression 

for the initial velocity of the unloading wave is expounded. 

1. Unlordlng oondftfon. The dependence u - e - t is taken in the form 
(I = F (5. 2 - t/o,,) in [l] for problems of active longitudinal wave propagation in a rod 
from material with delayed yielding. In particular, the solution is investigated for the 
law 0 = Et, 1 e 1 Q ep 0 = E,e + (E - Ei) e, ft - 2 I 41, I ~3 I > es H*i) 

which corresponds to linear hardening upon instantaneous loading. Here e, is a monoton- 
ely decreasing function of its argument. Henceforth considering only the tension case 
(a I+ 0, f + 0) , let us note that the requirement for a growth in stress in the cross sec- 

tion, in particular, of loading on the endface of a semi-infinite rod is not necessary. 
Indeed, defining the plastic deformation as EP = E - u / E, as is customary, we see that 

the transition to passive strain is determined by the requirement 

By using (1.1) this condition can be represented in one of the two forms 

(1.2) 

(1.3) 

The limiting case of “ne&al” loading investigated in [l] (domain 2 in Fig. 1, and 
Formula (13) in the mentioned paper) corresponds to the equality sign in (1.3). In par- 
ticular, unloading at the end of the rod starts at time t = f, if the applied stress 9, (I) = 

= o (0. t) satisfies the condition 
9’ (C) < EQ’ (1) for t > b (1.4) 

2, Unlordiag wava. Let T be the time of origination of plastic deformation 
at the end t = 0 of a semi-infinite rod, and let condition (1.4) be satisfied from the 
time t = 6 > 7. Let us show that the boundary between the active and passive strain 
domains is t = f (x) in the plane of the characteristics (2, t), i. e, the unloading wave 
has a finite propagation velocity b = l/f’ (z) satisfying the condition 

olib<oo. ao= JQ?-G += Czz (2.1) 

Here ue 01 are propagation velocities of the longitud~al elastic and plastic waves, 
respectively. For the unloading domain we take the connection between the stress and 


